Exponential Step-up/Step-down Type Switched-Capacitor Power Supply with Variable Conversion Ratio

Tomoya IWANAGA ${ }^{1}$, Shinya TERADA ${ }^{2}$, Kei EGUCHI 3, and Ichirou OOTA ${ }^{1}$
${ }^{1}$ Department of Information, Communication and Electronic Engineering
${ }^{2}$ Department of Control and Information Systems Engineering
National Institute of Technology, Kumamoto College
2659-2, Suya, Koushi, Kumamoto 861-1102, Japan
terada@kumamoto-nct.ac.jp, oota-i@kumamoto-nct.ac.jp
${ }^{3}$ Department of Information Electronic
Fukuoka Institute of Technology
3-30-1 Wajirohigashi, Higashi-Ku, Fukuoka 811-0295, Japan
eguti@fit.ac.jp

Abstract

In this paper, a switched-capacitor(SC) power supply which can obtain exponential conversion ratios $J^{ \pm K}$ is proposed (J and K are integer). The conversion ratio can be varied between J^{-K} and J^{+K} by shifting the clock phase of each switch. Concerning the general proposed circuit, the ideal step-up ratio is analyzed changing J and K at no-load, and HSPICE simulations are performed under the $J=2$ and $J=3$ types. As a result, (1) at noload, $J=3$ type can obtain the highest step-up voltage ratio with the same number of elements, (2) under the load, $J=2$ type can obtain the highest power conversion efficiency with the same chip-size and the same turn-on/turnoff time of each switch. Furthermore, the inrush current can be decreased by changing conversion ratio at startup.

Key-Words: - switched-capacitor power supply, exponential step-up/step-down, DC-DC converter, small-sized and lightweight, inrush current

1 Introduction

An existing power conversion circuit converts an input voltage into a high frequency rectangular wave (or a sinusoidal wave, only resonance converter) by a switching circuit, and outputs using a smoothing LC circuit. The output voltage is regulated by controlling a duty ratio or a switching frequency of the switching circuit. Although this method is obtained a high power conversion efficiency, deleterious magnetic flux is generated since a high frequency current flows in a magnetic component such as an inductor or a transformer. It is difficult to block the magnetic flux by a shield. Therefore, the power supply and a signal processing circuit needs to be spaced apart slightly for preventing the noise. On the other hand, switchedcapacitor(SC) power supplies do not contain any magnetic component and convert an input voltage by changing the connections of capacitors at high speed. The first SC power supply is presented in 1932 as the Cockcroft-Walton circuit (CW) for a high-voltage generator of a nuclear reaction experiment device[1]. Until semiconductor switches are developed in the 1980s, SC circuits were not utilized as a small and lightweight power supply. After high speed and low on-resistance power MOSFET's are marketed in 1990s, various topologies for the SC power supply
have been proposed[2]~[8]. Among others, a digitalselecting type proposed in recent years and its 2 times conversion ratio can obtain higher total conversion ratio with the small number of elements [5]~[7].

In this paper, an exponential step-up/step-down type SC expanding the digital-selecting type is proposed. The proposed circuits can obtain at most/least $J^{ \pm \kappa}$ times conversion ratio (J and K are integer). The conventional digital-selecting type has the structure that $2^{ \pm 1}$ times conversion circuit block connected in cascade K stages. On the other hand, the proposed circuits have the $J^{ \pm 1}$ times conversion circuit block per one stage. Therefore, the proposed circuits have the various conversion ratios by changing the combination of J and K. In section 2, the value of J which can obtain the ideal maximum step-up ratio with the same number of elements is analyzed at no-load. In section 3, HSPICE simulation results are shown and compared with characteristics of the ideal analysis.

In general, SC converters flow a large inrush current at start-up since multiple capacitors are charged at the same time. This inrush current causes deterioration of circuit elements and affect external devices. The proposed circuit can reduce the inrush current because the number of charged/discharged capacitors can be varied without changing circuit configurations.

In section 3, it is confirmed by simulations that the inrush current can be reduced at start-up by changing conversion ratio, as compared with that of the fixed step-up ratio.

2 Proposed Circuit

2.1 In general case (J^{K} times step-up)

Figure 1(a) shows the proposed circuit of k stages $(k=1,2 \cdots K)$. Table 1 shows the meanings of each symbol. The square symbols $1-\sqrt{1}$ in this figure indicate switches. They are driven by the non-overlapping J phase clocks $\Phi_{1} \sim \Phi_{J}$ as shown in Fig. 1(b). Also, $\bar{j}(j=1 \sim J)$ are driven by $\bar{\Phi}_{j}$ clocks. Figure 2 is the general structure of the proposed circuit consisted of circuit block of Fig. 1 connected in cascade. Furthermore, Fig. 3 shows the instantaneous equivalent circuit of Fig.1(a) while the clock Φ_{j} is in a high level. The capacitor $C_{j, k}$ is charged up to $V_{j, k}$ in a steadystate, since the upper node of $C_{j, k}$ is connected to the output voltage of the former stage and the lower node is connected to the ground. This state is repeated for $\Phi_{1} \sim \Phi_{J}$ and each capacitor $C_{j, k}$ in the same circuit block (same k) is charged up to the same voltage $V_{j, k}$ in a steady-state. At the same time, all capacitors are connected in series and output to each output node j_{k+1}. Therefore, the output voltage is $J V_{j, k}$. Since the step-up ratio per one stage is J times and K stages circuit blocks are connected in cascade, the exponential J^{K} times step-up ratio can be obtained.

$2.2 \mathbf{2}^{K}$ step-up type (2 ${ }^{3}$ times step-up)

Figure 4 shows the proposed circuit with $J=2$, $K=3$. In this figure, the switches 1,2 are driven by the two phase non-overlapping clocks Φ_{1} and Φ_{2}, respectively. Figures 5(a) and (b) are the instantaneous equivalent circuits in each state. During the state 1, the capacitor C_{11} is connected to the DC input voltage $V_{\text {in }}$ and charged up to $V_{\text {in }}$. Similarly, during the state 2, C_{21} is charged up to $V_{\text {in. }}$. In each state, capacitors C_{12} and C_{22} of the stage 2 are charged by the series connection of C_{11} and C_{21} of the first stage. Consequently, the charged voltage of C_{12} and C_{22} is $2 V_{\mathrm{in}}$. Thus the step-up ratio per stage is 2. In Fig.4, since the number of the circuit block K is 3 , the step-up ratio m is $2^{3}(=8)$. This circuit is also named the digitalselecting type since each capacitor is charged by the ratio of each binary digit weight [7].

Table 1 Meanings of symbols.

Symbols	Meanings
j	Order of capacitors in the same circuit block $(j=1,2 \ldots J)$
J	Number of capacitor per one stage
k	Order of circuit blocks $(k=1 \sim K)$
K	Number of stages in cascade connected blocks

(a)Circuit block SC_{k}
(b)driving clock

Fig. 1 Proposed circuit of stage k.

Fig. 2 General structure of proposed circuit.

Fig. 3 Instantaneous equivalent circuit in state j.

$V_{\text {out }}=2^{3} V_{\text {in }}$
Fig. 42^{K} step-up type $(J=2, K=3)$.

(a)State 1 (Φ_{1} : high level)

(b)State $2\left(\Phi_{2}\right.$: high level)

Fig 5 Instantaneous equivalent circuit of Fig.4.

2.33^{K} step-up type ($\mathbf{3}^{\mathbf{2}}$ times step-up)

Figure 6 shows the proposed circuit with $J=3$, $K=2$. In this figure, the switches $1-3$ are driven by the three phase non-overlapping clocks $\Phi_{1} \sim \Phi_{3}$, respectively. Figures 7(a) and (b) are the instantaneous equivalent circuits of $k=1$ during each state. During the states 1, 2, and 3, the capacitors C_{11}, C_{21}, and C_{31} are charged up to $V_{\text {in }}$, respectively. In the same time, all capacitors are connected in series and discharged to the output node j_{2} in each state. The output voltage $V_{j, 2}$ is equal to $3 V_{\text {in }}$ and the number of blocks K is 2 . Therefore, the step-up ratio m is $3^{2}(=9)$.

2.4 Method of varying conversion ratio

In this section, the operation of obtaining the general $J^{-K} \sim J^{+K}$ times conversion ratio without changing the circuit configurations is explained. The values of r_{k} and s_{k} are the number of charged and discharged capacitors at the stage k, respectively. In the stage 1 , since the r_{k} capacitors are charged in series by the input voltage V_{in}, each capacitor voltage is equal to $V_{\mathrm{in}} /$ r_{k}. In the same time, since the s_{k} capacitors are discharged in series to the next stage, the conversion ratio per one stage m_{k} is $s_{k} / r_{k}\left(s_{k}, r_{k}\right.$: integer). Therefore, the total conversion ratio is expressed by the following equation.

$$
\begin{equation*}
m=\frac{s_{1}}{r_{1}} \frac{s_{2}}{r_{2}} \cdots \frac{s_{K}}{r_{K}}=\prod_{k=1}^{K} \frac{S_{k}}{r_{k}} \tag{1}
\end{equation*}
$$

Figure 8 shows the proposed circuit of the stage 1 and the general stage k. In these figures, the phase of each switch is indicated the equation expressed by s_{k} and r_{k} in each square. These values are repeated cyclically $1,2 \ldots J$, when it is over J or below 1 . In the stage $1(k=1)$, in order to the series charge of the r_{1} capacitors, the phase of the input switch $\mathrm{S}_{j ; 0}$ is expressed by $J+1-r_{1}$. Similarly, the output switch $\mathrm{S}_{j, 1}$ in the stage 1 is expressed by $J+1-s_{1}$. The phases of the ground-switch $\mathrm{S}_{\mathrm{jg}, 1}$ and the ring-switch $\mathrm{S}_{\mathrm{j} \cdot 1,1}$ don't depend on s_{1} and r_{1} in the first stage. Also, the next ground-switch $\mathrm{S}_{\mathrm{jg}, k+1}$ and the output switch $\mathrm{S}_{\mathrm{j}, k+1}$ shift due to the former output s_{k-1} and the input r_{k}. That shift amount is expressed by the following equation.

$$
\begin{equation*}
p_{k}=\sum_{l=1}^{k-1}\left(s_{l}-r_{l+1}\right) \tag{2}
\end{equation*}
$$

As an example, Fig. 9 shows the instantaneous equivalent circuit with $J=3, K=2, r_{1}=1, s_{1}=3, r_{2}=2$, $s_{2}=1, p_{2}=s_{1}-r_{2}=1$. As the stage 2 in these figures, the step-down voltage can be obtained by charging multiple capacitors in series. The proposed circuit can obtain the variable conversion ratio by shifting each clock phase. Therefore, the inrush current at start-up can be reduced by setting low conversion ratio at start-up so that the number of charging capacitors at the same time is reduced. The output voltage

Fig 63^{K} step-up type ($J=3, K=2$).

Fig. 7 Instantaneous equivalent circuit of $k=1$ in Fig. 6.

stage $1(k=1)$

Fig. 8 Expression of phase using s_{k} and r_{k}.

reaches maximum value by increasing the conversion ratio gradually.

2.5 Number of elements versus step-up ratio

In this section, the value of J which can obtain the maximum step-up ratio ($m=J^{K}$) with the same number of elements is analyzed by changing J and K. The ideal step-up ratio is compared at no-load and steadystate. Therefore, the on-resistance of each switch is ignored. From Figs. 1 and 2, the ideal step-up ratio m, the number of capacitors N_{C} except for C_{L}, and the number of switches N_{sw} are expressed by the following equations, respectively.

$$
\begin{align*}
& m=J^{K} \tag{3}\\
& N_{\mathrm{C}}=J K \tag{4}\\
& N_{\mathrm{sw}}=3 J K+J=(3 K+1) J \tag{5}
\end{align*}
$$

Since J capacitors are connected K stages, N_{C} is shown by Eq.(3). Also, since three switches are needed per one capacitor and the J input switches are connected the input voltage, N_{sw} is shown by Eq.(5). From Eq.(4), substitute $K=N_{\mathrm{C}} / J$ into the Eq.(3) under the condition that N_{C} is constant.

$$
\begin{equation*}
m=J^{K}=J^{\frac{N_{C}}{J}} \tag{6}
\end{equation*}
$$

Taking the logarithm of Eq.(6) in order to calculate the J when m becomes the maximum value at the same N_{C}.

$$
\begin{equation*}
\ln m=\ln \left(J^{\frac{N_{C}}{J}}\right)=\frac{N_{C}}{J} \ln J \tag{7}
\end{equation*}
$$

Differentiating both sides by J,

$$
\begin{align*}
\frac{d m}{d J} \frac{1}{m} & =-\frac{N_{C}}{J^{2}} \ln J+\frac{N_{C}}{J} \frac{1}{J} \\
\frac{d m}{d J} \frac{1}{J^{\frac{N_{C}}{J}}} & =-\frac{N_{C}}{J^{2}}(1-\ln J) \\
\frac{d m}{d J} & =J^{\frac{N_{C}}{J}-2}(1-\ln J) . \tag{8}
\end{align*}
$$

At $\mathrm{d} m / \mathrm{d} J=0$, since m becomes maximum value,

$$
\begin{equation*}
J=e=2.718 \tag{9}
\end{equation*}
$$

Figure 10 shows the characteristics of Eq.(6) when the value of J is continuous. From this figure, m becomes maximum at $J=e$ in spite of N_{C}. Furthermore, when N_{C} is increased, these curves become sharp. Figures 11 and 12 show the characteristics of the step-up ratio m versus the number of capacitors N_{C} and the number of switches N_{sw}, respectively. In these figures, J is an integer value practically. Both figures indicate that the step-up ratio of $J=3$ is maximum with the same number of elements since it is closest integer number to e.

(c)state 3

Fig. 9 Instantaneous equivalent circuit

Fig. $10 J$ versus step-up ratio.

Fig. 11 Number of capacitors versus step-up ratio.

Fig. 12 Number of switches versus step-up ratio.

3 HSPICE simulation

In this section, HSPICE simulations are performed in the case of $J=3$ and $J=2$ by considering the on-resistance of each switch. Table 2 shows the circuit parameters used simulations. The on-resistance
$r_{\text {on }}$ is only considered for the switching elements. $J=2$ with $K=3$ (Fig.4) and $J=3$ with $K=2$ (Fig.6) are selected so that the number of capacitors are equal in each circuit. Moreover, the simulations of $J=2$ type are performed under the conditions A and B . In the condition A, the values of $r_{\text {on }}$ and the clock frequency f_{c} are the same value as those of $J=3$, respectively. In the condition B , the chip-size and the minimum turn-on/turn-off time of each switch are equal to those of $J=3$, respectively. Since $r_{\text {on }}$ is getting bigger when the number of switches increases on the same chip-size, the $r_{\text {on }}$ of $J=2$ is slightly smaller than that of $J=3$ $(20 / 21 \approx 0.95$ times $)$. Moreover, when the minimum turn-on/turn-off time of each switch is same, f_{c} is $3 / 2$ times that of $J=3$ since the clock period T_{c} of $J=2$ is $2 / 3$ times.

3.1 Output voltage waveforms at start-up

Figure 13 shows the simulated output voltage waveforms at start-up under the condition that the input voltage $V_{\text {in }}$ is 3.3 V and no-load. These output voltages $V_{\text {out }}$ in both $J=2$ and $J=3$ reach a steady-state about 300μ s and are converted up to the ideal voltage $\left(J^{K} V_{\text {in }}\right)$.

Fig. 13 Simulated output voltage waveforms at start-up.

3.2 Output characteristics

Figures 14 and 15 show the characteristics of the power conversion efficiency η and the step-up ratio m, respectively when the output power $P_{\text {out }}$ is increased to 30 W by changing the load resistance R_{L}. From these figures, the power conversion efficiency of $J=2$ under the condition B is about 1.6% higher than that of $J=3$. Also, the step-up ratio of $J=3$ is about 10.4% higher than that of $J=2$ under the condition B. Therefore when the on-resistance of each switch and the clock frequency are equal in each circuit, $J=3$ has the highest efficiency similarly to the ideal analysis. However, in an actual circuit $J=2$ has the highest efficiency since the voltage ripple of each capacitor is reduced as the clock frequency is higher.

Table 2 Circuit parameters.

Compared circuit	$J=3$	$J=2$	
		ConditionA	ConditionB
Number of capacitors per stage J	3	2	2
Number of cascade stage K	2	3	3
Ideal step-up ratio $m=J^{K}$	9	8	8
Number of capacitors N_{c}	6	6	6
Number of switches $N_{\text {sw }}$	21	20	20
Input voltage $V_{\text {in }}$	3.3 V	3.3 V	3.3 V
Maximum output voltage $V_{\text {out } \mathrm{m}}$	29.7 V	26.4 V	26.4 V
Charge transfer capacitor C	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$
Smoothing capacitor C_{L}	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$
On-resistance $r_{\text {on }}$ of switch	$10 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$9.52 \mathrm{~m} \Omega$
Clock frequency f_{c}	370 kHz	370 kHz	556 kHz
Clock period T_{c}	$2.7 \mu \mathrm{~s}$	$2.7 \mu \mathrm{~s}$	$1.8 \mu \mathrm{~s}$
Number of clock phase $(=J)$	3	2	2

Fig. 14 Output power versus efficiency.

Fig. 15 Output power versus step-up ratio.

3.3 Variation of output voltage at start-up

Figures 16 and 17 show the simulated output voltage waveforms and the inrush current waveforms at start-up, respectively under $J=3, K=2$ and the parameters of Table 2 . The conversion ratio is varied $3^{-2} \sim 3^{+2}$ times and compared with the fixed times step-up ratio 3^{2}. Table 3 shows variation of the conversion ratio
changing the number of the charging capacitors r_{k} and the discharging capacitors s_{k} at start-up. In this table, m_{1} and m_{2} are the conversion ratios in stage 1 and stage 2 , respectively. The conversion ratio is changed per 50 clock periods as shown in this table. At first, m_{2} is fixed to the minimum and m_{1} is increased gradually from the minimum to the maximum. Next, m_{2} is increased gradually. From Fig.17, the inrush current is reduced about $1 / 3$ of the fixed step-up ratio.

Fig. 16 Simulated output voltage waveforms at start-up.

Fig. 17 Simulated inrush current waveforms at start-up.

4 Conclusion

In this paper, an exponential step-up/step-down type switched-capacitor power supply is proposed. Furthermore, the ideal maximum step-up ratio is analyzed in general circuits and HSPICE simulations are performed under the 3^{K} step-up type and the 2^{K} step-up type. As a result, (1) at no-load simulation, the 3^{K} step-up type is obtained the highest step-up ratio when the same number of elements, (2) under the load simulation, the 2^{K} step-up type has the highest power conversion efficiency under the same chipsize and the same turn-on/turn-off time of each switch. Consequently, under a light load, the 3^{K} stepup type is the optimum since the step-up ratio is the highest with small drop of the efficiency.

Concerning the proposed circuit of the $3^{ \pm K}$ type, the inrush current at start-up can be reduced $1 / 3$ by controlling the conversion ratio. In the future, experiment results will be compared with the simulated results.

Table 3 Time variation of conversion ratio.

Time t	m_{1}	m_{2}	$m=m_{1} m_{2}$	r_{1}	s_{1}	r_{2}	s_{2}
0	0.33	0.33	0.11	3	1	3	1
$50 T_{\mathrm{c}}$	0.67	0.33	0.22	3	2	3	1
$100 T_{\mathrm{c}}$	1	0.33	0.33	2	2	3	1
$150 T_{\mathrm{c}}$	1.5	0.33	0.5	2	3	3	1
$200 T_{\mathrm{c}}$	2	0.33	0.67	1	2	3	1
$250 T_{\mathrm{c}}$	3	0.33	1	1	3	3	1
$300 T_{\mathrm{c}}$	3	0.67	2	1	3	3	2
$350 T_{\mathrm{c}}$	3	1	3	1	3	2	2
$400 T_{\mathrm{c}}$	3	1.5	4.5	1	3	2	3
$450 T_{\mathrm{c}}$	3	2	6	1	3	1	2
$500 T_{\mathrm{c}}$	3	3	9	1	3	1	3

References:

[1] J. D. Cockcroft and E. T. S. Walton, Experiments with high velocity positive ions. I. Further developments in the method of obtaining high velocity positive ions, Proceedings of the Royal Society A, vol.136, pp.619-630, 1932.
[2] On-Cheong Mak, Yue-Chung Wong and A. Ioinovici, "Step-up DC power supply based on a switched-capacitor circuit," in IEEE Transactions on Industrial Electronics, vol. 42, no. 1, pp. 90-97, Feb 1995.
[3] A. Ioinovici, "Switched-capacitor power electronics circuits," in IEEE Circuits and Systems Magazine, vol. 1, no. 3, pp. 37-42, Third Quarter 2001.
[4] A. Gherlitz, Y. Berkovich and A. Ioinovici, "Stepup switching-mode converter with high voltage gain using a switched-capacitor circuit," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[5] L.-K. Chang and C.-H. Hu, High efficiency MOS charge pumps based on exponential-gain structure with pumping gain increase circuits, IEEE Trans. on Power Electronics, vol. 21, no. 3, pp.826-831, May 2006.
[6] L.Chang and C.Hu, A discussion on exponential gain charge pump, IEEE Trans. on power electronics, vol.21, no.3, May 2006.
[7] T.Tanzawa, On two-phase switched-capacitor multipliers with minimum circuit area, IEEE Trans. on Circuits and Systems, vol.57, no10, Oct 2010.
[8] I. Vaisband, M. Saadat and B. Murmann, "A Closed-Loop Reconfigurable Switched-Capacitor DC-DC Converter for Sub-mW Energy Harvesting Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 2, pp. 385-394, Feb. 2015.

